Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 32(15): 3009-17, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22645307

RESUMO

Immediately after birth, skeletal muscle must undergo an enormous period of growth and differentiation that is coordinated by several intertwined growth signaling pathways. How these pathways are integrated remains unclear but is likely to involve skeletal muscle contractile activity and calcium (Ca(2+)) signaling. Here, we show that Ca(2+) signaling governed by stromal interaction molecule 1 (STIM1) plays a central role in the integration of signaling and, therefore, muscle growth and differentiation. Conditional deletion of STIM1 from the skeletal muscle of mice (mSTIM1(-/-) mice) leads to profound growth delay, reduced myonuclear proliferation, and perinatal lethality. We show that muscle fibers of neonatal mSTIM1(-/-) mice cannot support the activity-dependent Ca(2+) transients evoked by tonic neurostimulation, even though excitation contraction coupling (ECC) remains unperturbed. In addition, disruption of tonic Ca(2+) signaling in muscle fibers attenuates downstream muscle growth signaling, such as that of calcineurin, mitogen-activated protein (MAP) kinases, extracellular signal-regulated kinase 1 and 2 (ERK1/2), and AKT. Based on our findings, we propose a model wherein STIM1-mediated store-operated calcium entry (SOCE) governs the Ca(2+) signaling required for cellular processes that are necessary for neonatal muscle growth and differentiation.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/genética , Glicoproteínas de Membrana/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Animais , Transporte Biológico Ativo/genética , Transporte Biológico Ativo/fisiologia , Cálcio/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Sistema de Sinalização das MAP Quinases , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/crescimento & desenvolvimento , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-akt/biossíntese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Molécula 1 de Interação Estromal , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Dev Dyn ; 241(4): 639-47, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22411552

RESUMO

During muscle development, the sarco/endoplasmic reticulum (SR/ER) undergoes remodeling to establish a specialized internal Ca(2+) store for muscle contraction. We hypothesized that store operated Ca(2+) entry (SOCE) is required to fill Ca(2+) stores and is, therefore, critical to creating a mature SR/ER. Stromal interaction molecule 1 (STIM1) functions as a sensor of internal Ca(2+) store content and an activator of SOCE channels. Myocytes lacking STIM1 display reduced SR Ca(2+) content and altered expression of key SR proteins. Sarcolipin (SLN), an inhibitor of the SR calcium pump, was markedly increased in the muscle of mutant STIM1 mice. SLN opposes the actions of STIM1 by limiting SOCE, reducing SR Ca(2+) content and delaying muscle differentiation. During mouse muscle development SLN is highly expressed in embryonic muscle, while the expression of STIM1 is up-regulated postnatally. These results suggest that SOCE regulates SR/ER specialization and that SLN and STIM1 act in opposing fashions to govern SOCE during myogenesis.


Assuntos
Cálcio/fisiologia , Retículo Endoplasmático/fisiologia , Glicoproteínas de Membrana/fisiologia , Desenvolvimento Muscular , Proteínas Musculares/fisiologia , Proteolipídeos/fisiologia , Animais , Canais de Cálcio , Sinalização do Cálcio , Diferenciação Celular , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Molécula 1 de Interação Estromal
3.
J Am Soc Nephrol ; 22(3): 526-35, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21258036

RESUMO

Mutations in the canonical transient receptor potential cation channel 6 (TRPC6) are responsible for familial forms of adult onset focal segmental glomerulosclerosis (FSGS). The mechanisms by which TRPC6 mutations cause kidney disease are not well understood. We used TRPC6-deficient mice to examine the function of TRPC6 in the kidney. We found that adult TRPC6-deficient mice had BP and albumin excretion rates similar to wild-type animals. Glomerular histomorphology revealed no abnormalities on both light and electron microscopy. To determine whether the absence of TRPC6 would alter susceptibility to hypertension and renal injury, we infused mice with angiotensin II continuously for 28 days. Although both groups developed similar levels of hypertension, TRPC6-deficient mice had significantly less albuminuria, especially during the early phase of the infusion; this suggested that TRPC6 adversely influences the glomerular filter. We used whole-cell patch-clamp recording to measure cell-membrane currents in primary cultures of podocytes from both wild-type and TRPC6-deficient mice. In podocytes from wild-type mice, angiotensin II and a direct activator of TRPC6 both augmented cell-membrane currents; TRPC6 deficiency abrogated these increases in current magnitude. Our findings suggest that TRPC6 promotes albuminuria, perhaps by promoting angiotensin II-dependent increases in Ca(2+), suggesting that TRPC6 blockade may be therapeutically beneficial in proteinuric kidney disease.


Assuntos
Albuminúria/metabolismo , Angiotensina II/efeitos adversos , Rim/metabolismo , Canais de Cátion TRPC/metabolismo , Albuminúria/etiologia , Albuminúria/fisiopatologia , Angiotensina II/administração & dosagem , Angiotensina II/farmacologia , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Injeções Subcutâneas , Rim/efeitos dos fármacos , Rim/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Podócitos/patologia , Canais de Cátion TRPC/genética , Canal de Cátion TRPC6
4.
Circ Res ; 105(10): 1023-30, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-19797170

RESUMO

RATIONALE: Cardiac muscle adapts to increase workload by altering cardiomyocyte size and function resulting in cardiac hypertrophy. G protein-coupled receptor signaling is known to govern the hypertrophic response through the regulation of ion channel activity and downstream signaling in failing cardiomyocytes. OBJECTIVE: Transient receptor potential canonical (TRPC) channels are G protein-coupled receptor operated channels previously implicated in cardiac hypertrophy. Our objective of this study is to better understand how TRPC channels influence cardiomyocyte calcium signaling. METHODS AND RESULTS: Here, we used whole cell patch clamp of adult cardiomyocytes to show upregulation of a nonselective cation current reminiscent of TRPC channels subjected to pressure overload. This TRPC current corresponds to the increased TRPC channel expression noted in hearts of mice subjected to pressure overload. Importantly, we show that mice lacking TRPC1 channels are missing this putative TRPC current. Moreover, Trpc1(-)(/)(-) mice fail to manifest evidence of maladaptive cardiac hypertrophy and maintain preserved cardiac function when subjected to hemodynamic stress and neurohormonal excess. In addition, we provide a mechanistic basis for the protection conferred to Trpc1(-)(/)(-) mice as mechanosensitive signaling through calcineurin/NFAT, mTOR and Akt is altered in Trpc1(-)(/)(-) mice. CONCLUSIONS: From these studies, we suggest that TRPC1 channels are critical for the adaptation to biomechanical stress and TRPC dysregulation leads to maladaptive cardiac hypertrophy and failure.


Assuntos
Sinalização do Cálcio , Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Estresse Fisiológico , Canais de Cátion TRPC/metabolismo , Animais , Calcineurina/genética , Calcineurina/metabolismo , Cardiomegalia/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Insuficiência Cardíaca/genética , Mecanotransdução Celular/genética , Camundongos , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR , Canais de Cátion TRPC/genética
5.
Nat Cell Biol ; 10(6): 688-97, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18488020

RESUMO

It is now well established that stromal interaction molecule 1 (STIM1) is the calcium sensor of endoplasmic reticulum stores required to activate store-operated calcium entry (SOC) channels at the surface of non-excitable cells. However, little is known about STIM1 in excitable cells, such as striated muscle, where the complement of calcium regulatory molecules is rather disparate from that of non-excitable cells. Here, we show that STIM1 is expressed in both myotubes and adult skeletal muscle. Myotubes lacking functional STIM1 fail to show SOC and fatigue rapidly. Moreover, mice lacking functional STIM1 die perinatally from a skeletal myopathy. In addition, STIM1 haploinsufficiency confers a contractile defect only under conditions where rapid refilling of stores would be needed. These findings provide insight into the role of STIM1 in skeletal muscle and suggest that STIM1 has a universal role as an ER/SR calcium sensor in both excitable and non-excitable cells.


Assuntos
Cálcio/metabolismo , Glicoproteínas de Membrana/fisiologia , Animais , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular , Inativação Gênica , Glicoproteínas de Membrana/metabolismo , Camundongos , Modelos Biológicos , Modelos Genéticos , Contração Muscular , Músculos/metabolismo , Técnicas de Patch-Clamp , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais , Molécula 1 de Interação Estromal
6.
Mol Cell Biol ; 28(8): 2637-47, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18268005

RESUMO

Transient receptor potential (TRP) channels are nonselective cation channels, several of which are expressed in striated muscle. Because the scaffolding protein Homer 1 has been implicated in TRP channel regulation, we hypothesized that Homer proteins play a significant role in skeletal muscle function. Mice lacking Homer 1 exhibited a myopathy characterized by decreased muscle fiber cross-sectional area and decreased skeletal muscle force generation. Homer 1 knockout myotubes displayed increased basal current density and spontaneous cation influx. This spontaneous cation influx in Homer 1 knockout myotubes was blocked by reexpression of Homer 1b, but not Homer 1a, and by gene silencing of TRPC1. Moreover, diminished Homer 1 expression in mouse models of Duchenne's muscular dystrophy suggests that loss of Homer 1 scaffolding of TRP channels may contribute to the increased stretch-activated channel activity observed in mdx myofibers. These findings provide direct evidence that Homer 1 functions as an important scaffold for TRP channels and regulates mechanotransduction in skeletal muscle.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Deleção de Genes , Distrofias Musculares/fisiopatologia , Canais de Cátion TRPC/metabolismo , Animais , Sinalização do Cálcio , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Proteínas de Arcabouço Homer , Camundongos , Camundongos Knockout , Contração Muscular , Distrofias Musculares/genética , Distrofias Musculares/patologia , Ligação Proteica , Canais de Cátion TRPC/genética
7.
Dev Biol ; 295(2): 486-97, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16765936

RESUMO

Morphogenesis of the cardiac arterial pole is dependent on addition of myocardium and smooth muscle from the secondary heart field and septation by cardiac neural crest cells. Cardiac neural crest ablation results in persistent truncus arteriosus and failure of addition of myocardium from the secondary heart field leading to malalignment of the arterial pole with the ventricles. Previously, we have shown that elevated FGF signaling after neural crest ablation causes depressed Ca2+ transients in the primary heart tube. We hypothesized that neural crest ablation results in elevated FGF8 signaling in the caudal pharynx that disrupts secondary heart field development. In this study, we show that FGF8 signaling is elevated in the caudal pharynx after cardiac neural crest ablation. In addition, treatment of cardiac neural crest-ablated embryos with FGF8b blocking antibody or an FGF receptor blocker rescues secondary heart field myocardial development in a time- and dose-dependent manner. Interestingly, reduction of FGF8 signaling in normal embryos disrupts myocardial secondary heart field development, resulting in arterial pole malalignment. These results indicate that the secondary heart field myocardium is particularly sensitive to FGF8 signaling for normal conotruncal development, and further, that cardiac neural crest cells modulate FGF8 signaling in the caudal pharynx.


Assuntos
Fator 8 de Crescimento de Fibroblasto/fisiologia , Coração/embriologia , Morfogênese , Faringe/embriologia , Transdução de Sinais , Animais , Anticorpos/farmacologia , Anticorpos/uso terapêutico , Embrião de Mamíferos , Fator 8 de Crescimento de Fibroblasto/antagonistas & inibidores , Coração/crescimento & desenvolvimento , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/etiologia , Camundongos , Crista Neural/anormalidades , Faringe/metabolismo , Persistência do Tronco Arterial/embriologia , Persistência do Tronco Arterial/etiologia
8.
Biophys J ; 86(2): 966-77, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14747332

RESUMO

This report provides a detailed analysis of developmental changes in cytoplasmic free calcium (Ca(2+)) buffering and excitation-contraction coupling in embryonic chick ventricular myocytes. The peak magnitude of field-stimulated Ca(2+) transients declined by 41% between embryonic day (ED) 5 and 15, with most of the decline occurring between ED5 and 11. This was due primarily to a decrease in Ca(2+) currents. Sarcoplasmic reticulum (SR) Ca(2+) content increased 14-fold from ED5 to 15. Ca(2+) transients in voltage-clamped myocytes after blockade of SR function permitted computation of the fast Ca buffer power of the cytosol as expressed as generalized values of B(max) and K(D). B(max) rose with development whereas K(D) did not change significantly. The computed SR Ca(2+) contribution to the Ca(2+) transient and gain factor for Ca(2+)-induced Ca(2+) release increased markedly between ED5 and 11 and slightly thereafter. These results paralleled the maturation of SR and peripheral couplings reported by others and demonstrated a strong relationship between structure and function in development of excitation-contraction coupling. Modeling of buffer power from estimates of the major cytosolic Ca binding moieties yielded a B(max) and K(D) in reasonable agreement with experiment. From ED5 to 15, troponin C was the major Ca(2+) binding moiety, followed by SR and calmodulin.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Ventrículos do Coração/embriologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Retículo Sarcoplasmático/fisiologia , Função Ventricular , Envelhecimento/fisiologia , Animais , Soluções Tampão , Células Cultivadas , Embrião de Galinha , Galinhas , Estimulação Elétrica , Potenciais da Membrana/fisiologia
9.
J Mol Cell Cardiol ; 35(5): 515-23, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12738233

RESUMO

In normal adult-ventricular myocardium, Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) is activated via Ca2+ entry through L-type Ca2+ channels. However, embryonic-ventricular myocytes have a prominent T-type Ca2+ current (ICa,T). In this study, the contribution of ICa,T to CICR was determined in chick-ventricular development. Electrically stimulated Ca2+ transients were examined in myocytes loaded with fura-2 and Ca2+ currents with perforated patch-clamp. The results show that the magnitudes of the Ca2+ transient, L-type Ca2+ current (ICa,L) and ICa,T, decline with development with the majority of the decline of transients and ICa,L occurring between embryonic day (ED) 5 and 11. Compared to controls, the magnitude of the Ca2+ transient in the presence of nifedipine was reduced by 41% at ED5, 77% at ED11, and 78% at ED15. These results demonstrated that the overall contribution of ICa,T to the transient was greatest at ED5, while ICa,L was predominate at ED11 and 15. This indicated a decline in the contribution of ICa,T to the Ca2+ transient with development. Nifedipine plus caffeine was added to deplete the SR of Ca2+ and eliminate the occurrence of CICR due to ICa,T. Under these conditions, the transients were further reduced at all three developmental ages, which indicated that a portion of the Ca2+ transients present after just nifedipine addition was due to CICR stimulated by ICa,T. These results indicate that Ca2+ entry via T-type channels plays a significant role in excitation-contraction coupling in the developing heart that includes stimulation of CICR.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Cálcio/metabolismo , Miocárdio/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Cafeína/farmacologia , Canais de Cálcio Tipo L/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Embrião de Galinha , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia
10.
Circulation ; 107(3): 469-76, 2003 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-12551873

RESUMO

BACKGROUND: The small heat shock proteins HSP20, HSP25, alphaB-crystallin, and myotonic dystrophy kinase binding protein (MKBP) may regulate dynamic changes in the cytoskeleton. For example, the phosphorylation of HSP20 has been associated with relaxation of vascular smooth muscle. This study examined the function of HSP20 in heart muscle. METHODS AND RESULTS: Western blotting identified immunoreactive HSP20, alphaB-crystallin, and MKBP in rat heart homogenates. Subcellular fractionation demonstrated that HSP20, alphaB-crystallin, and MKBP were predominantly in cytosolic fractions. Chromatography with molecular sieving columns revealed that HSP20 and alphaB-crystallin were associated in an aggregate of approximately 200 kDa, and alphaB-crystallin coimmunoprecipitated with HSP20. Immunofluorescence microscopy demonstrated that the pattern of HSP20, alphaB-crystallin, and actin staining was predominantly in transverse bands. Treatment with sodium nitroprusside led to increases in the phosphorylation of HSP20, as determined with 2-dimensional immunoblots. Incubation of transiently permeabilized myocytes with phosphopeptide analogues of HSP20 led to an increase in the rate of shortening. The increased shortening rate was associated with an increase in the rate of lengthening and a more rapid decay of the calcium transient. CONCLUSIONS: HSP20 is associated with alphaB-crystallin, possibly at the level of the actin sarcomere. Phosphorylated HSP20 increases myocyte shortening rate through increases in calcium uptake and more rapid lengthening.


Assuntos
Proteínas de Choque Térmico/análise , Proteínas de Choque Térmico/fisiologia , Contração Miocárdica , Miocárdio/química , Miocárdio/metabolismo , Fosfoproteínas/análise , Fosfoproteínas/fisiologia , Animais , Especificidade de Anticorpos , Cálcio/análise , Células Cultivadas , Proteínas de Choque Térmico HSP20 , Proteínas de Choque Térmico/metabolismo , Microscopia de Fluorescência , Nucleotídeos Cíclicos/metabolismo , Fosfopeptídeos/farmacologia , Fosfoproteínas/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...